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where the T, is the observed transition tempera-
ture. The values of A that correspond to each of
our samples are given in Table L

It appears, therefore, that the effect reported
here may be due to the formation of very small
grains in the aluminum alloy owing to URQ,
and that the presence of a small quantity of Cu is
only incidental to the physical picture. However,
pure UR-quenched aluminum shows no such effect,
at least not nearly as great. This is probably due
to the fact that the addition of Cu impurity greatly
facilitates the formation of small platelike grains
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which are difficult to obtain in pure aluminum no
matter how great the quenching speed. This hypoth-
esis is further strengthened by other observers, '’
who find in working with Cu-doped quenched Al films
that these crystallize in smaller grains than when
pure metal is used.
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The resistive state of type-II transition-element superconductors in a high magnetic field

is studied using a technique due to Maki et al.

The order parameters for the individual bands

have similar Abrikosov-type solutions. Assuming a common upper critical field for the two
bands, it is seen that the motions of the s- and d-electron pairs are controlled by different

diffusion equations.

The diffusion constants for the s- and d-pair motions are obtained for

a typical transition-element superconductor. It is found that the s-band diffusion constant is
not affected by the presence of the second band, but that the d-band diffusion constant is af-

fected.

I. INTRODUCTION

When placed in a perpendicular magnetic field,
a type-II superconductor exhibits a triangular ar-
ray of vortices through which the magnetic field

penetrates the superconductor. Using the Ginsburg-
Landau equations, Abrikosov' showed the existence
of a mixed state containing an array of quantized
flux lines. Recently, a number of experiments?
have been performed to investigate the motion of
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the vortex lines caused by an externally applied
electric field. Many theories, ® based on the an-
alogy between this situation and a similar one in
superfluid helium, have been proposed to account
for the dissipative phenomena encountered in the
experiments. Most of these theories have dealt
with the low-field region (H>H,,).

Schmid* has recently discussed the problem,
using the time -dependent Ginzburg-Landau equa-
tions. It was seen that close to H,, and in the
presence of a transverse electric field, the order
parameter moves with an uniform velocity « = E/
H,. Furthermore, he was able to account for the
flux-flow resistivity close to the critical tempera-
ture. In a series of papers, Maki et al.® extended
the approach to both pure and dirty type-II super-
conductors at arbitrary temperatures and in the
vicinity of the upper critical field. It turns out
that the calculations for dirty superconductors are
much simpler than those for pure superconductors.

In all of Maki’s papers, it has been assumed
that the Bardeen-Cooper-Schrieffer (BCS) theory
was adequate in describing the superconducting
states. However, experimental measurements®
of various properties of the transition-metal
superconductors indicate that the BCS model is
not adequate for these superconductors. A two-
band model” has been introduced to account for
the superconductivity in these elements. Using
the two-band model, several authors® were able
to obtain a best fit of the experimental data on the
specific heats and the temperature variation of
the penetration depths in superconducting niobium.
More recently, direct evidence for a second tran-
sition temperature® and energy gap'® in niobium
has been obtained.

The aim of this paper is to apply the techniques
developed by Maki ef al. to transition-metal super-
conductors in high magnetic fields. Only the pure
superconductors need to be considered, since it
has been pointed out! that the dirty transition-
element superconductors behave exactly like the
BCS type. To ensure the presence of two energy
gaps, we shall restrict ourselves to transition-
metal superconductors having g2, <g.g,.

In Sec. II, we will expand Maki’s formalism so
that it can be applied to two-band superconductors.
As we shall see, the physical observables in the
two-band model are expressed as sums of two
Maki-like observables. However, the energy-gap
equations are quite different from Maki’s expres-
sion. It is seen that by letting g4 =0, the energy-
gap equations reduce to two Maki-like equations.
(It should be pointed out that the energy gaps in the
two-band superconductors are not the order param-
eters as is the case with pure one-band supercon-
ductors.)

The two energy gaps are obtained in Sec. III in
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terms of Abrikosov-like solutions.
be of the following form:

Both gaps will

ALy tr, 1) =Z ¥, wexpliken(y +ut)]
x exp[—eH(x +bn/2eH +iu/4e® ;4,H)?] ,

where the diffusion constants Dy, reflect the two-
band nature of the model. In the absence of the
electric fields, the two energy gaps are just the
solutions®? obtained by solving the two-band analog'®
of the Ginzburg-Landau equations. Assuming that
g:> g, " we find that the s-band energy gap is not
affected much by the presence of the other band.
However, it is seen that the d band is affected by
the s band.

II. FORMULATION

In this section, we will develop a general formu-
lation with which various physical quantities in a
state having a time-varying energy gap can be
calculated. In studying the resistive state of type-
II transition-metal superconductors in high mag-
netic fields, it becomes possible to treat the ef-
fects of the energy gap as a perturbation. (Near
H,,, the energy gaps or the order parameter in the
case of a one-band superconductor will be ex-
tremely small.) We shall assume that there is
only one upper critical field at which both energy
gaps vanish.

The interaction Hamiltonian for the system is
given by

Hi=e [ n 0, )0 0, )a% + [ [A,0r, D%} (r, )
+Al(r, )0, (r, t) | d%

ve [ nglr, o (r, %7 + [ [ A7, O)Lr, 1)

+ A (v, ), (r, )] d% 2.1)
where
ey @, 1) =20 0Ly bsiare >
\I’s(d)('r; )=Psay (r, 1) zps(d)t('r; , (2.2)
‘I’;(d)(’r; t) = lpg(d)' (1’: t) 210.;([!)' (V’ t) )
and
AI (1’, t) ==& <\I’§(7’, t)) —&sd <\Il;(7” t)> s
(2.3)

Ay )= —gg (¥ r, 1))~ g (T (7, 0)) .

The operators zpsf(d)o and Ygq); are, respectively,
the creation and destruction operators of a s(d)
electron with spin 0. The only assumption made

in (2.1) and (2.3) is that the generalized time-de-
pendent Hartree-Fock approximation is valid.

¢ (7, t)= —Ex is the scalar potential which describes
a constant electric field in the x direction. The
interaction Hamiltonian can be separated into two
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parts, each being the interaction Hamiltonian for
the individual bands.

In the Suhl-Matthias-Walker’ (SMW) model, the
physical quantities for the system are just the sums
of the same quantities for the individual bands.

For example, the electric current in the two-band
system is

j(’}’, t) st(r’ t) +jd(7’ t) 3 (2° 4)

where
js(d)(rs t) == (i/zms(d)) Za{[vzp;(d)q ('V: t)] zi[)s(d)ar(""y t)
- d).:(d )o (‘V, t) [Vzps(d)o('r’ t)]} . (2- 5)

Similarly, the heat current for the system is just
the sum of the heat currents j* (v, t) and j% (, #),
defined as

ji‘m (r,t)= - (i/zms(d))za{d;;(d)u (r, t)[Ws(d)o“’: ]

+ [Vd};(d ) (1’, t)]d;s(d )0(7” t)} . (2- 6)

In general, the physical quantities will be bilinear
in the electron creation and destruction operators
of both bands.

The physical observables are the expectation

values of the above type of quantities and are of
J
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the following form:
A, 0)=xpli [* H, (") dt' AW, )

x exp[—i [ CH ") dat'’l) 2.7
= (expli /", ;Izl(t’)dt']As(r, )

x exp[=i [ ! Ho(¢"at'])

+(expli [ H, @) at) A1)

x exp[-i [*_ Hyt")at'"]) 2.8)

where H(r,t) and Hy/(7,t) are the interaction
Hamiltonians for the individual bands and are,
respectively, the first two terms of (2.1) and the
last two. In obtaining the separation of (2. 8), use
has been made of the noncontribution of terms
linear in either ¥y, or ¥!,,, since these terms
would not conserve the number of particles. Car-
rying out the expansion and then keeping only the
lowest-order terms, we get

A- (’V’ t) =As(7’> t) +‘:1d(/r? t)?

where

Auartr,)=—ie [ at" [ @r([Asay, 0 ngay ', 1]} 60, 1)

a1 aty [ @ [ Em A, ), Ty D], Faym, 1)])

+ ( [ [As(d) (7” t): ‘I’;(d)(m, tz)], ‘Its(d)(l9 t)]> }A;(d)(l’ t)As(d) (m’ tz) .

(2.9)

The retarded products i {([A(¢), B(£')])6(t —¢’) can then be obtained by using the temperature Green’s-func-

tion techniques. ®

The energy gaps (2. 3) take the form

. t . t
Adiay(r, 8) = =gt (xp[i f_w Hoay(t")dt' | Wy, 1) expl =i [ Howyr (') dt"'])

.t .
~gq (exp[i J_"Q Hyoyr (t") dt'] i) (7, 2) exp[—zf_: Hyo (') at""]) .

(2.10)

Again, by carrying out the expansion and keeping only the lowest-order terms, we obtain

t
ALy, O =igewy [ at’ [ @' ([¥ia)r, D), Toiar', £)]) Afay ', £7)

t
+igsd .[.u dt’ f ds"’,([q’;(s)(’” t)! \I‘d(s)(‘l”, t')]> A;(s)(y” t') s

where everything said in the development of
Ay, (7, t) also applies here.

If we were to consider the dirty limit, the math-
ematics involved in solving (2. 11) would be greatly
simplified. However, as we have previously said,
the dirty two-band superconductors can be ade-
quately described by the one-band model which has
been fully treated by Maki ef al. In Sec. III, we

(2.11)

will obtain the Abrikosov solutions of the energy
gaps of a clean type-II transition-element super-
conductor in a high magnetic field and subjected

to a transverse electric field.

III. ABRIKOSOV SOLUTIONS

We shall see that, to a good approximation, both
of the energy gaps have Abrikosov-type solutions,
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i.e.,
Aty 5 )=2, Coaynexplikn( y +ut)]
x exp[— eH(x + kn/2eH +iu/4e® y0,H)] ,
(3.1)

where the diffusion constant D, is chosen so that
certain terms in a later equation will vanish. It
il

will be seen that for transition-metal supercon-
ductors having g,>g;, the diffusion constant for
the s band is not altered by the presence of the
second band, while the constant for the second band
is altered by the presence of the s band.

Following Abrikosov, Gor’kov, and Dzyaloshin-
ski, 1® we incorporate the effects of the external
fields by means of the phase factor to obtain

t N
Al(d)(’rs t) ==gsa) f_w dt’ f dsrl eXp[is(’V, t; 7’, t’)]< [‘I’;u)(’l’, t), ‘I’s(d )(7", t')]> E=A=0 A:(d)('r', t')

~igy [ i at’ [ @ expliSWr, t; 7, t")]{[¥hs, @, 1), Yacey s )] Vpe a0 Doy 1) (3.2)

where
t
S(r, ;7' ,t") = 2¢ f» o dt' -2 f;A(r")d'r” .

(3.3
The retarded products

i([‘l’f(’f, £, ¥, 1)]) 4= =00 —1t")
]

A:u)(’}’, t):gs(d) f da"’Ks(d)('rl’ 7’) AI(d)('r’r t'=t- |x

r

are the electron-electron or hole-hole propagators
in the pure metal in the absence of the external
fields.

These propagators are easily evaluated using
the temperature Green’s-function techniques. °
Equation (3.2) can then be written as'’

—x’!/leW)xl)

.4
"’gsdfds’r’Kd(s)(r”'r) Afzm(?", t'=t- Ix_x'I/lvd(s)xI) ) 3.4)
where
o rx)e lx=-x"1 2 2 )
' —jep XXXV XX ioH(® -x")t
Koayr,7') f r lvs(d)x exp( ie ooy ieH(x? - x ) tang
d’q , , Zywu 1 _igugg)) 1 Jvsa ‘ (3. 52)
X @) explig(r —#")]| In 41rT ¥ 2 " TanT ’

and
Vstaye = Vs(ar; = Sinf sing . (3. 5b)
By expanding the energy gaps A';(,,, in the series

A:(d)('r’ t)zznas(d)n Dstarun (’V, t) ’ .(306)

where
¢s(d)un(7’ t) (H (d))'l exp[zk(y +ut)]

x exp[— eH(x +k/2eH +iu/4e®  u,H?)]
3.7
and the eigenfunctions of the diffusion operator

9 . 1 -

Hs(d)z(g—zlted)) +s>s(d)(1' 1V+23A)2 ’ (3-8)

with
t .

Mew = Hs(d)x +? Hs(d)y ’
we can use (3.4) as the means to determine the
expansion coefficients @), We will choose D ;)
so that only the first term in the expansion sur-
vives.

Substituting the expansion (3. 6) into (3.4) and

using the orthogonality of the eigenfunctions, we
obtain the following algebraic equations:

? ((sun|sum)b,,— g,(sun|K|sum))a g,

=g § (dun’ [Kd ‘ SUM Y gyne (3.9)
Z": ((dun|dum )8,y — g4 (dun | K| dum )ayu,

=gu s (oun'|K,| dum)a g, (3.10)

where (s(d)un| is the short-hand notation for
¢:(d)un and
(aun|K|bum )= [ d% [ d%" ¢%. (v, ')
X K('yl’ 'V’)(bbum(V’ t)

ti=t=lx-x1/ lv,l
(3.11)

By keeping only terms of first order in u, g, g4,
and g4, we obtain

_ (suO|K|sul) @du0| K,|su1)
Asur =& (sull|sul) T8 (sullsul)y

(3.12)
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_ (du0|K,|duly (su0|K|dul)
a8 Gutlaty €4 uilauty 0 319

where ag, and a,,0 were set to unity. It is interest-
ing to note that in the limit # -0, where the s and
d designation is spurious, the coefficients a,, and
@ 44, bOth go to zero since (On| K(r, 7')|0m) is diagonal.
This implies that in the absence of the electric field,
the vortex structures identified with the electrons
belonging to the different bands are identical to each
other.

The diffusion constants are obtained by solving
the following equations:

(su0|Kg|sul) &
s o S - 2sd

(a0 IK31sul) ~~ g (3.14)
(@u0 | K, | dul) g 6.15)

(suO K, dul) ~ g,

In the case g,; =0, the two diffusion constants will
be identical except for having different Fermi veloc-
ities. This case is informative even though it has
been pointed out that the assumption g,,=0 will lead
to discrepancies in the values of the energy gaps.'®
It shows that even though the vortices associated
with the different bands move at the same speed,
the dissipations of energy by the two moving vor-
tices are different from each other.

For transition-metal superconductors such as
niobium where g2, < g,g, and g, >g,, we see that
8e4/8q 1S extremely small and could be considered
to be zero. Therefore, we obtain

2
- Ys ! dz ° 2
:Ds_wfo (1_za)vz,[ at ¢

x exp(— Pzia)[smh ((—1_—2_§ZWE>]-1

Solving for D,, we get
2

o . Ya ! az ° 2 _ 2 z<- ¢ -1_
Dy = g [-/0‘ A7 j(; act? exp(-p%? s1nh—2—,z(1_z)1 .

_ -1
xu,l u_fzszo dt £ (1~ %) exp(- p*c) (smh ‘T'_im) ]

where
p=€/21T, e=v,(3eH,)"?, C'=(87T/v))C .

It therefore appears that within the approximations
used, the d-band diffusion constant depends on the
interband electron-phonon coupling g,,. In the sense
that the coupling g,, is dependent on the density of
states in the s band, we can say that the d-band dif-
fusion constant is modified by the presence of the

s band and that the s-band diffusion constant is not
affected by the d band.

I-MING

| Do

TANG

1 dz *
X[[ ml d§§(1‘P2§2)

x exp(- p’¢?) ( sinh (Tig?)wé)j "
(3.18)
where
p=¢/21T , €=v,(3 eHcZ)l/2 .

The asymptotic forms of the diffusion constant D are
D, =(v2/2nT)0. 284 - 0.734p%), T ST, (8.17)
D, = W2/27T){1 - (12p%) " In(n?y p?)~' +1 + 2£(2)/£(2)]

+(2/mp?)e@)1-27V3), T« T, . (3.18)

The evaluation of (3. 15) is more complicated
since the relatively large value of g,,/g,; prevents
us from setting the right-hand side of (3. 15) equal
to zero. Instead of actually evaluating the matrix
element (su0| K, |dul), we will assume that

(suO0| K |dul) = CE/HC2 ,

which is reasonable since we are only interested

in terms of first order or less in #. The zeroth-
order term does not exist since in the limit #=0

the matrix element must vanish. With this assump-

(3.19)

tion, we have

T aQ
f v4sinf | cos ¢|

exp(- eH?¢ %/2 cos®p)
X Sinh(27T 12| /v, sind | cosd|)

mdg

2 L2y #2102
X(__§__+l§1(1.eH§tan¢)>=_cgm E_
2D, v, 8inf | cose| &« H,
(3. 20)
.&d.cr_f:_]
H,,
-1
, (3.21)

[
IV. ADDITIONAL COMMENTS

One of the more crucial assumptions made is the
common upper critical field for the two bands.
Otherwise, much of the discussion in Secs, II and
IIT would not be valid. To see this, let us assume
that there exist separate critical fields for the two
energy gaps and identify them as H,, and H_,;, the
fields at which the s and d energy gaps go to zero.
Close to H,,, the expansion implicit in (2. 10) would
still be possible. However, the g,, term in the
equation for A, (r,¢) would be zero since it depends
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on A (r,t) which is zero above H,
sult in an expression for D, different from (3. 21),
It would be completely impossible to obtain any-

thing close to H,,. Near this field, the power ex-

pansion in A, (r,#) would diverge. This would make

impossible the derivations found in Sec. III,

To see how there is only one upper critical field
for the two bands, we need only look at (2.3). We
can interpret the energy gaps as resulting from

s+ This would re-

pair correlation of electrons in both bands at the
same time. Looking at the s-band energy gap, we
can see that even at fields where the correlation of
electrons in the s band is zero, the energy gap
Ay(r, t) would not necessarily vanish. The d-band
correlation would still exist. This is reminiscent
of the continuing existence of the energy gaps above
T.s seen by Hafstrom et al. in the tunneling experi-
ments on niobium.,
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It is demonstrated that the theory of Bardeen, Kiimmel, Jacobs, and Tewordt for an isolated
vortex in a pure type-II superconductor at arbitrary temperatures is in agreement with the
theory of Neumann and Tewordt near T= T, if nonanalytic terms of odd order in (1~ T/T)"? in
the free energy are assumed to vanish, The leading nonanalytic term is examined by the use
of perturbation theory to see if it vanishes, but no definite conclusion can be drawn. The ap-
proximations used in deriving these results should prove useful in the application of the method
of Bardeen et al. to other problems involving pure inhomogeneous superconductors.

I. INTRODUCTION

Bardeen et al.' (BKJT) have recently presented
a theory for the properties of an isolated vortex in
a pure type-II superconductor at arbitrary tem-
peratures, thus giving a partial solution to one of
the outstanding problems in type-II superconduc-
tivity.2 Among other results, H,, was obtained as

a function of k at 0 °K; an extension to higher tem-
peratures is in progress.® The isolated vortex
problem is also being treated by Eilenberger and
Biittner who have recently published a preliminary
report®; their theory is not limited to pure super-
conductors.

Prior to these efforts, the best theory for an
isolated vortex was that of Neumann and Tewordt®



